Nasa Image of the Day

Nebula RCW49

One of the most prolific birthing grounds in our Milky Way galaxy, a nebula called RCW 49, is exposed in superb detail for the first time in this new image from NASA's Spitzer Space Telescope. Located 13,700 light-years away in the southern constellation Centaurus, RCW 49 is a dark and dusty stellar nursery that houses more than 2,200 stars.

Book Store
Astronomy Photographer of the YearAstronomy Photographer of the Year

Astronomy.co.uk has teamed up with Amazon.co.uk to bring you the finest selection of astronomy related books at the best prices.

Browse through our bookstore and check out our fine selection of books from star charts and astrophotography to mathematical astronomy. We are sure you will find the book that best suits your needs.

Sky View Cafe
Sky View Cafe

Sky View Café is a Java applet that lets you use your web browser to see many types of astronomical information, in both graphical and numerical form. You can see which stars and planets will be out tonight in the sky above your home town, see how the next solar or lunar eclipse will look from London, or find out when the Moon rose over Sydney on your birthday ten years ago. Sky View Café includes star charts, a 3-D orrery, displays of the moons of Jupiter and Saturn, an astronomical event calendar, an ephemeris generator, and many other features. Enter Sky View Café now!

Buy A Star Gift - Name a star for any occasion, view it live on Google Sky
Universal Star Registry Certificate

Astronomy.co.uk Star Naming Service
Name a star for yourself or for that special person as the perfect gift that will sparkle for a lifetime! Ideal for any occassion, birthdays, christenings, anniversaries and memorials. Reserve a place in the heavens for your loved ones


The Sky Tonight Astronomy News
Gaia starts mapping our galaxy’s bar - Read more >
Tue, 16 Jul 2019 15:00:00 +0200


The first direct measurement of the bar-shaped collection of stars at the centre of our Milky Way galaxy has been made by combining data from ESA’s Gaia mission with complementary observations from ground- and space-based telescopes.




New Hubble Constant Measurement Adds to Mystery of Universe's Expansion Rate
Tue, 16 Jul 2019 08:00:00 EDTHubble Image

In 1924, American astronomer Edwin Hubble announced that he discovered galaxies outside of our Milky Way by using the powerful new Hooker telescope perched above Los Angeles. By measuring the distances to these galaxies, he realized the farther away a galaxy is, the faster it appears to be receding from us. This was incontrovertible evidence the universe is uniformly expanding in all directions. This was a big surprise, even to Albert Einstein, who predicted a well-balanced, static universe. The expansion rate is the basis of the Hubble constant. It is a sought-after value because it yields clues to the origin, age, evolution, and future fate of our universe.

For nearly the past century astronomers have worked meticulously to precisely measure the Hubble constant. Before the Hubble Space Telescope was launched in 1990, the universe's age was thought to lie between 10 and 20 billion years, based on different estimates of the Hubble constant. Improving this value was one of the biggest justifications for building the Hubble telescope. This paid off in the early 1990s when a team led by Wendy Freedman of the University of Chicago greatly refined the Hubble constant value to a precision of 10%. This was possible because the Hubble telescope is so sharp at finding and measuring Cepheid variable stars as milepost markers — just as Edwin Hubble did 70 years earlier.

But astronomers strive for ever greater precision, and this requires further refining yardsticks for measuring vast intergalactic distances of billions of light-years. Freedman's latest research looks at aging red giant stars in nearby galaxies. They are also milepost markers because they all reach the same peak brightness at a critical stage of their late evolution. This can be used to calculate distances.

Freedman's research is one of several recent studies that point to a nagging discrepancy between the universe's modern expansion rate and predictions based on the universe as it was more than 13 billion years ago, as measured by the European Space Agency's Planck satellite. This latest measurement offers new evidence suggesting that there may be something fundamentally flawed in the current model of the universe.



Gaia’s biggest operation since launch - Read more >
Mon, 15 Jul 2019 16:00:00 +0200


On Tuesday 16 July, teams at ESA’s mission control will perform an ‘orbit change manoeuvre’ on the Gaia space observatory – the biggest operation since the spacecraft was launched in 2013.




Lunar eclipse - Read more >
Mon, 15 Jul 2019 12:13:00 +0200


Space Science Image of the Week: ESA’s SMART-1 spacecraft captured this view of a lunar eclipse on its way to the Moon in 2004



Hubble Uncovers Black Hole Disk that Shouldn't Exist
Thu, 11 Jul 2019 10:00:00 EDTHubble Image

Astronomers are always tickled when they find something they didn't expect to be there. Peering deep into the heart of the majestic spiral galaxy NGC 3147, researchers uncovered a swirling gas disk precariously close to a black hole weighing about 250 million times the mass of our Sun. The surprise is that they thought the black hole was so malnourished, it shouldn’t have such a structure around it. It's basically a "Mini-Me" version of more powerful disks seen in very active galaxies.

What's especially intriguing is that the disk is so deeply embedded in the black hole's intense gravitational field, its light is being stretched and intensified by the black hole's powerful grasp. It's a unique, real-world demonstration of Einstein's laws of relativity, formulated a century ago.

Hubble clocked material whirling around the black hole as moving at more than 10% of the speed of light. And, the gas astronomers measured is so entrenched in the gravitational well that light is struggling to climb out, and therefore appears stretched to redder wavelengths.



Dust storms swirl at the north pole of Mars - Read more >
Thu, 04 Jul 2019 14:00:00 +0200


ESA’s Mars Express has been keeping an eye on local and regional dust storms brewing at the north pole of the Red Planet over the last month, watching as they disperse towards the equator.




STScI to Design Science Operations for New Panoramic Space Telescope
Tue, 02 Jul 2019 17:00:00 EDTHubble Image

NASA has awarded a contract to the Space Telescope Science Institute (STScI) in Baltimore, Maryland, for the Science Operations Center (SOC) of the Wide Field Infrared Survey Telescope (WFIRST) mission. WFIRST is a NASA observatory designed to settle essential questions in a wide-range of science areas, including dark energy and dark matter, and planets outside our solar system.



Atmosphere of Mid-Size Planet Revealed by Hubble and Spitzer
Tue, 02 Jul 2019 11:00:00 EDTHubble Image

Our solar system contains two major classes of planets. Earth is a rocky terrestrial planet, as are Mercury, Venus, and Mars. At about the distance of the asteroid belt, there is a "frost line" where space is so cold more volatile material, like water, can remain frozen. Out here live the gas giants–Jupiter, Saturn, Uranus, and Neptune–which have bulked up on hydrogen and helium and other volatiles.

Astronomers are curious about a new class of planet not found in the Solar System. Weighing in at 12.6 Earth masses the planet is more massive than Earth, but less massive than Neptune (hence, intermediate between the rocky and gaseous planets in the Solar System). What's more, the planet, GJ 3470 b, is so close to its red dwarf star that it completes one orbit in just three days! As odd as it seems, planets in this mass range are likely the most abundant throughout the galaxy, based on surveys by NASA's Kepler space telescope. But they are not found in our own solar system.

Astronomers enlisted the combined multi-wavelength capabilities of NASA's Hubble and Spitzer space telescopes to assemble for the first time a "fingerprint" of the chemical composition of GJ 3470 b's atmosphere, which turns out to be mostly hydrogen and helium, and surprisingly, largely lacking heavier elements. One possible explanation is that the planet formed as a 10-Earth-mass rocky core that then accumulated hydrogen very close to its star, rather than migrated in which is the conventional wisdom for star-hugging planets.



Hubble Captures the Galaxy's Biggest Ongoing Stellar Fireworks Show
Mon, 01 Jul 2019 10:00:00 EDTHubble Image

In the mid-1800s, mariners sailing the southern seas navigated at night by a brilliant star in the constellation Carina. The star, named Eta Carinae, was the second brightest star in the sky for more than a decade. Those mariners could hardly have imagined that by the mid-1860s the brilliant orb would no longer be visible. Eta Carinae was enveloped by a cloud of dust ejected during a violent outburst.

Stars don't normally play vanishing acts unless they are undergoing rapid and violent activity. Observations by the Hubble Space Telescope and other observatories have helped astronomers piece together the story of this unique star's petulant behavior. During part of its adult life, Eta Carinae has undergone a series of eruptions, becoming extremely bright during each episode, before fading away. One explanation for the monster star's antics is that the convulsions were caused by a complex interplay of as many as three stars, all gravitationally bound in one system. The most massive member – weighing in at 150 times our Sun's mass – swallowed one of the stars. This violent event ignited the massive outburst of the mid-1800s. Evidence for that event, dubbed the Great Eruption, lies in the huge, expanding bipolar lobes of hot gas surrounding the system.

Because of Eta Carinae's violent history, astronomers have kept watch over its activities. Although Hubble has monitored the volatile superstar for 25 years, it still is uncovering new revelations. Using Hubble to map the ultraviolet-light glow of magnesium embedded in warm gas, astronomers were surprised to discover the gas in places they had not seen it before. The newly revealed gas is important for understanding how the eruption began, because it represents the fast and energetic ejection of material that may have been expelled by the star shortly before the expulsion of the bipolar bubbles.

One of the most massive known stars in the Milky Way galaxy, Eta Carinae is destined to finally meet its end by exploding as a supernova.



ExoMars 2020: progress and challenges - Read more >
Fri, 28 Jun 2019 15:00:00 +0200


The full parachute system that will help deliver the ExoMars rover and a surface science platform to the martian surface has completed a full-scale high-altitude deployment sequence test, although unexpected damage to the main parachutes occurred.




Asteroids old and new - Read more >
Fri, 28 Jun 2019 10:00:00 +0200


A visualisation of the orbits of asteroids observed by ESA’s Gaia satellite, including four recent discoveries



A chaos found only on Mars - Read more >
Thu, 27 Jun 2019 11:00:00 +0200


 The cracked, uneven, jumbled landscape seen in this image from ESA’s Mars Express forms an intriguing type of terrain that cannot be found on Earth: chaotic terrain.




ESA’s new mission to intercept a comet - Read more >
Wed, 19 Jun 2019 15:20:00 +0200


 ‘Comet Interceptor’ has been selected as ESA’s new fast-class mission in its Cosmic Vision Programme. Comprising three spacecraft, it will be the first to visit a truly pristine comet or other interstellar object that is only just starting its journey into the inner Solar System.




Arianespace and ESA announce Jupiter Icy Moons Explorer launch contract - Read more >
Mon, 17 Jun 2019 17:00:00 +0200


 The Jupiter Icy Moons Explorer, Juice, will ride into space on an Ariane launch vehicle, Arianespace and ESA confirmed today at the International Paris Air Show.




Table Salt Compound Spotted on Europa
Wed, 12 Jun 2019 15:00:00 EDTHubble Image

Finding common table salt — sodium chloride — on the surface of a moon is more than just a scientific curiosity when that moon is Europa, a potential abode of life.

If the salt came from the briny subsurface ocean of Europa, a satellite of Jupiter, that ocean may chemically resemble Earth's oceans more than previously thought. Because Europa's solid, icy crust is geologically young it has been suspected that whatever salts exist on the surface may come from the ocean below, which might host microorganisms.

Using visible-light spectral analysis, planetary scientists at Caltech and NASA's Jet Propulsion Laboratory discovered that the yellow color visible on portions of the surface of Europa is sodium chloride. They reached this conclusion with spectroscopic data from NASA's Hubble Space Telescope. Researchers were able to identify a distinct absorption in the visible spectrum which matches how salt would look when irradiated by the Sun.

Tara Regio is the yellowish area to left of center, in this NASA Galileo image of Europa’s surface. This region of geologic chaos is the area researchers identified an abundance of sodium chloride.

The finding was published in Science Advances on June 12.



Planck finds no new evidence for cosmic anomalies - Read more >
Thu, 06 Jun 2019 15:00:00 +0200


ESA’s Planck satellite has found no new evidence for the puzzling cosmic anomalies that appeared in its temperature map of the Universe. The latest study does not rule out the potential relevance of the anomalies but they do mean astronomers must work even harder to understand the origin of these puzzling features.




A Pair of Fledgling Planets Directly Seen Growing Around a Young Star
Mon, 03 Jun 2019 11:00:00 EDTHubble Image

In order to grow to Jupiter size or larger, a gas giant planet must slurp large quantities of hydrogen and other gases from the disk in which it forms. Astronomers have looked for evidence of this process, but direct observations are challenging because planets become lost in the glare of their star. A team has succeeded in making ground-based observations of two planets accreting matter from a disk. It represents only the second multi-planet system to be directly imaged.



Mars on Earth – what next? - Read more >
Fri, 31 May 2019 16:02:00 +0200


A Mars Sample Return campaign would bring samples of the Red Planet back to Earth for examination in the best terrestrial laboratories – but choosing the samples and storing them on Mars for later return is only one part of the extensive campaign being planned by the mission designers and scientists.




ExoMars orbiter prepares for Rosalind Franklin - Read more >
Thu, 30 May 2019 14:39:00 +0200


On 15 June, the ESA-Roscosmos ExoMars Trace Gas Orbiter (TGO) will follow a different path. An ‘Inclination Change Manoeuvre’ will put the spacecraft in an altered orbit, enabling it to pick up crucial status signals from the ExoMars rover, Rosalind Franklin, due to land on the Red Planet in 2021.




A European mission control for the martian rover - Read more >
Thu, 30 May 2019 11:23:00 +0200


The ExoMars rover has a brand new control centre in one of Europe’s largest Mars yards. The Rover Operations Control Centre (ROCC) was inaugurated today in Turin, Italy, ahead of the rover’s exploration adventure on the Red Planet in 2021.




Ten things about Mars - Read more >
Tue, 28 May 2019 09:30:00 +0200


Discover fascinating facts about the Red Planet and how ESA is contributing to the scientific exploration of Mars



Galaxy Blazes with New Stars Born from Close Encounter
Thu, 16 May 2019 10:00:00 EDTHubble Image

One doesn't need a Ph.D. in astrophysics to recognize there is something odd-looking about this otherwise beautiful galaxy, NCG 4485. Like the Batman character Two-Face, one side looks normal, but the other side looks contorted with a firestorm of star formation going on. Why the colorful asymmetry in an island star city many thousands of light-years across? The clue is off the edge of the photo. It's another galaxy, NGC 4490, that swept by NGC 4485 millions of years ago. The gravitational taffy pull between the two galaxies compressed interstellar gas to trigger a flurry of new star birth as seen in the abundance of young blue stars and pinkish nebulas. So, out of a near-collision between two galaxies comes stellar renewal and birth. It's a trademark of our compulsive universe where even things as big as galaxies can go bump in the night.



Hubble Astronomers Assemble Wide View of the Evolving Universe
Thu, 02 May 2019 10:00:00 EDTHubble Image

How far is far? And, how do you know when you get there? In 1995, astronomers decided to use the Hubble Space Telescope to conduct a bold and daring experiment to address this puzzle. For 10 consecutive days, Hubble stared at one tiny, seemingly empty patch of sky for 1 million seconds.

The gamble of precious telescope time paid off. Hubble captured the feeble glow of myriad never-before-seen galaxies. Many of the galaxies are so far away it has taken billions of years for their light to reach us. Therefore, the view is like looking down a "time corridor," where galaxies can be seen as they looked billions of years ago. Hubble became astronomy's ultimate time machine.

The resulting landmark image is called the Hubble Deep Field. At the time, the image won the gold medal for being the farthest peek into the universe ever made. Its stunning success encouraged astronomers to pursue a series of Hubble deep-field surveys. The succeeding surveys uncovered more galaxies at greater distance from Earth, thanks to new cameras installed on Hubble during astronaut servicing missions. The cameras increased the telescope's power to look even deeper into the universe.

These surveys provided astronomers with a huge scrapbook of images, showing how, following the big bang, galaxies built themselves up over time to become the large, majestic assemblages seen today in the nearby universe.

Among the most notable deep-field surveys are the Great Observatories Origins Deep Survey (GOODS), in 2003; the Hubble Ultra Deep Field (HUDF), in 2004; and the eXtreme Deep Field (XDF), in 2012.

Now, astronomers are releasing a new deep-field image by weaving together exposures from several of these previous galaxy "fishing expeditions." Their efforts have produced the largest, most comprehensive “history book” of galaxies in the universe. The snapshot, a combination of nearly 7,500 separate Hubble exposures, represents 16 years' worth of observations. The ambitious endeavor is called the Hubble Legacy Field. The new view contains about 30 times as many galaxies as in the HUDF. The wavelength range stretches from ultraviolet to near-infrared light, capturing all the features of galaxy assembly over time.

The image mosaic presents a wide portrait of the distant universe and contains roughly 265,000 galaxies. They stretch back through 13.3 billion years of time to just 500 million years after the universe's birth in the big bang.



Mystery of the Universe's Expansion Rate Widens with New Hubble Data
Thu, 25 Apr 2019 10:00:00 EDTHubble Image

There is something wrong with our universe. Or, more specifically, it is outpacing all expectations for its present rate of expansion.

Something is amiss in astronomers' efforts to measure the past and predict the present, according to a discrepancy between the two main techniques for measuring the universe's expansion rate – a key to understanding its history and physical parameters.

The inconsistency is between the Hubble Space Telescope measurements of today's expansion rate of the universe (by looking at stellar milepost markers) and the expansion rate as measured by the European Space Agency's Planck satellite. Planck observes the conditions of the early universe just 380,000 years after the big bang.

For years, astronomers have been assuming this discrepancy would go away due to some instrumental or observational fluke. Instead, as Hubble astronomers continue to "tighten the bolts" on the accuracy of their measurements, the discordant values remain stubbornly at odds.

The chances of the disagreement being just a fluke have skyrocketed from 1 in 3,000 to 1 in 100,000.

Theorists must find an explanation for the disparity that could rattle ideas about the very underpinnings of the universe.



Hubble Celebrates 29th Anniversary with a Colorful Look at the Southern Crab Nebula
Thu, 18 Apr 2019 10:00:00 EDTHubble Image

This Hubble image shows the results of two stellar companions in a gravitational waltz, several thousand light-years from Earth in the southern constellation Centaurus. The stellar duo, consisting of a red giant and white dwarf, are too close together to see individually in this view. But the consequences of their whirling about each other are two vast shells of gas expanding into space like a runaway hot air balloon. Both stars are embedded in a flat disk of hot material that constricts the outflowing gas so that it only escapes away above and below the stars. This apparently happens in episodes because the nebula has two distinct nested hourglass-shaped structures. The bubbles of gas and dust appear brightest at the edges, giving the illusion of crab legs. The rich colors correspond to glowing hydrogen, sulfur, nitrogen, and oxygen. This image was taken to celebrate Hubble's 29th anniversary since its launch on April 24, 1990.



NASA Awards 2019 Postdoctoral Fellowships
Thu, 04 Apr 2019 10:00:00 EDTHubble Image

NASA has selected 24 new Fellows for its prestigious NASA Hubble Fellowship Program (NHFP). The program enables outstanding postdoctoral scientists to pursue independent research in any area of NASA Astrophysics, using theory, observation, experimentation, or instrument development. Each fellowship provides the awardee up to three years of support.



Hubble Watches Spun-up Asteroid Coming Apart
Thu, 28 Mar 2019 10:00:00 EDTHubble Image

Astronomers once thought asteroids were boring, wayward space rocks that simply orbit around the Sun. These objects were dramatically presented only in science fiction movies.

But recent observations show that asteroids are anything but dull. In reality they are dynamic, active worlds that can ultimately disintegrate due to the long-term subtle effects of sunlight, which can slowly spin them up until they begin to shed material.

Several telescopes, including NASA's Hubble Space Telescope, have caught the gradual self-destruction of the asteroid (6478) Gault. Images from Hubble show two narrow, comet-like tails of dusty debris streaming from the diminutive asteroid.

For Gault, a mass of rubble a few miles across, mere sunlight set the stage for its gradual demise. The force of sunlight, in concert with Gault's own asymmetrical shape, speeded up the asteroid's rotation over a period of more than 100 million years. The estimated spin-up rate is 1 second every 10,000 years.

Today, the asteroid is rotating once every two hours, a speed so fast that it can no longer hold its surface material. The slightest disturbance — perhaps the impact of a pebble, or just a failure of the stressed material — may have set off a collapse. The dust left the asteroid's surface in gentle, short bursts, perhaps due to landslides lasting anywhere from a few hours to a few days. The particles are drifting away from Gault's surface at the speed of a strolling human. The gentle process is like scattering flour into the air, where wind — or sunlight, in the case of Gault — stretches the debris into a long streamer.

Astronomers will monitor the asteroid for future events. About 800,000 known asteroids reside between Mars and Jupiter, and they may fly apart at the rate of roughly one per year.



What Does the Milky Way Weigh? Hubble and Gaia Investigate
Thu, 07 Mar 2019 10:00:00 ESTHubble Image

We live in a gigantic star city. Our Milky Way galaxy contains an estimated 200 billion stars. But that's just the bare tip of the iceberg. The Milky Way is surrounded by vast amounts of an unknown material called dark matter that is invisible because it doesn't release any radiation. Astronomers know it exists because, dynamically, the galaxy would fly apart if dark matter didn't keep a gravitational lid on things.

Still, astronomers would like to have a precise measure of the galaxy's mass to better understand how the myriad galaxies throughout the universe form and evolve. Other galaxies can range in mass from around a billion solar masses to 30 trillion solar masses. How does our Milky Way compare?

Curious astronomers teamed up the Hubble Space Telescope and European Space Agency's Gaia satellite to precisely study the motions of globular star clusters that orbit our galaxy like bees around a hive. The faster the clusters move under the entire galaxy's gravitational pull, the more massive it is. The researchers concluded the galaxy weighs 1.5 trillion solar masses, most of it locked up in dark matter. Therefore, the Milky Way is a "Goldilocks" galaxy, not too big and not too small. Just right!



Hubble's Advanced Camera for Surveys Resumes Operations
Wed, 06 Mar 2019 16:15:00 ESTHubble Image

NASA has recovered the Hubble Space Telescope's Advanced Camera for Surveys instrument, which suspended operations on Thursday, Feb. 28, 2019. The final tests were conducted and the instrument was brought back to its operational mode on March 6.



Advanced Camera for Surveys Anomaly on Hubble Space Telescope
Fri, 01 Mar 2019 20:00:00 ESTHubble Image

At 8:31 p.m. EST on February 28, 2019, the Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope suspended operations after an error was detected as the instrument was performing a routine boot procedure. The error indicated that software inside the camera had not loaded correctly. A team of instrument system engineers, flight software experts, and flight operations personnel quickly organized to download and analyze instrument diagnostic information. This team is currently working to identify the root cause and then to construct a recovery plan.



Tiny Neptune Moon Spotted by Hubble May Have Broken from Larger Moon
Wed, 20 Feb 2019 13:00:00 ESTHubble Image

The phrase "a chip off the old block" apparently also applies to the outer moons of our solar system.

A tiny moon whirling around Neptune that was uncovered in Hubble Space Telescope photographs taken in 2013 has puzzled astronomers ever since then because it is very close to a much larger moon named Proteus. The orbits of the two moons are presently 7,500 miles apart.

Proteus, at 260 miles in diameter, is roughly the size of the state of Ohio. By contrast, Hippocamp is just 20 miles across, or the size of metropolitan Columbus, Ohio. Proteus should have gravitationally swept aside or swallowed the moon while clearing out its orbital path.

Smoking-gun evidence for Hippocamp's origin comes from NASA Voyager 2 images from 1989 that show a large impact crater on Proteus, almost large enough to have shattered the moon. Apparently, a little piece of Proteus got kicked off and has slowly migrated away from the parent body.

Neptune's satellite system has a violent and tortured history. Many billions of years ago, Neptune captured the large moon Triton from the Kuiper Belt. Triton's gravity would have torn up Neptune's original satellite system. Triton settled into a circular orbit and the debris from shattered Neptunian moons re-coalesced into a second generation of natural satellites. However, comet bombardment continued to tear things up, leading to the birth of Hippocamp, which might be considered a third-generation satellite.



Hubble Reveals Dynamic Atmospheres of Uranus and Neptune
Thu, 07 Feb 2019 10:00:00 ESTHubble Image

The two major planets beyond Saturn have only been visited once by a spacecraft, albeit briefly. NASA's Voyager 2 spacecraft swung by Uranus in 1986, and Neptune in 1989. Our robotic deep-space tourist snapped the only close-up, detailed images of these monstrous worlds. For Neptune, the images revealed a planet with a dynamic atmosphere with two mysterious dark vortices. Uranus, however, appeared featureless. But these views were only brief snapshots. They couldn't capture how the planets' atmospheres change over time, any more than a single snapshot of Earth could tell meteorologists about weather behavior. And, they go through protracted seasonal changes in their multi-decades-long orbits. Ever since the Voyager encounter, the Hubble Space Telescope has provided an opportunity to monitor these worlds like a diligent weatherman.

Since Hubble's launch in 1990, astronomers have used it to amass an album of outer planet images. Yearly monitoring of these giant worlds is now allowing astronomers to study long-term seasonal changes, as well as capture transitory weather patterns. One such elusive event is yet another dark storm on Neptune, shown in the latest Hubble image of the planet (right).

The telescope's new snapshot of Uranus (left) shows that the ice giant is not a planetary wallflower. A vast bright polar cap across the north pole dominates the image. The cap, which may form due to seasonal changes in atmospheric flow, has become much more prominent than in previous observations dating back to the Voyager 2 flyby, when the planet, in the throes of winter, looked bland.



Space science vision - Read more >
Tue, 05 Feb 2019 11:32:00 +0100


How ESA’s space science programme tackles the big questions about our place in the Cosmos



Exoplanet imaginarium - Read more >
Tue, 05 Feb 2019 09:15:00 +0100


Imagine the alien worlds ESA will investigate with its three generations of exoplanet missions



Meet ESA's science fleet - Read more >
Wed, 11 Apr 2018 13:56:00 +0200


Explore 3D models of ESA's science satellites across the Solar System in this interactive tool


This Month's Sky Map
This Month's Sky Map

Take a look at this month's Sky Map to help you explore the wonders of the night sky!

Ideal for all sky watchers including beginners to astronomy.

The Sky Map will help you identify planets, bright stars, constellations and nebulae!
Printable version available too!


Follow AstronomyUK on Twitter